WORK SAMPLE PORTFOLIO

Annotated work sample portfolios are provided to support implementation of the Foundation - Year 10 Australian Curriculum.

Each portfolio is an example of evidence of student learning in relation to the achievement standard. Three portfolios are available for each achievement standard, illustrating satisfactory, above satisfactory and below satisfactory student achievement. The set of portfolios assists teachers to make on-balance judgements about the quality of their students' achievement.

Each portfolio comprises a collection of students' work drawn from a range of assessment tasks. There is no predetermined number of student work samples in a portfolio, nor are they sequenced in any particular order. Each work sample in the portfolio may vary in terms of how much student time was involved in undertaking the task or the degree of support provided by the teacher. The portfolios comprise authentic samples of student work and may contain errors such as spelling mistakes and other inaccuracies. Opinions expressed in student work are those of the student.

The portfolios have been selected, annotated and reviewed by classroom teachers and other curriculum experts. The portfolios will be reviewed over time.

ACARA acknowledges the contribution of Australian teachers in the development of these work sample portfolios.

THIS PORTFOLIO: YEAR 9 MATHEMATICS

This portfolio provides the following student work samples:

Sample 1	Measurement: Trigonometry
Sample 2	Measurement: Wheelchair access (Pythagoras' Theorem)
Sample 3	Measurement: Tall and short (volume of a cylinder)
Sample 4	Geometry: Similar triangles
Sample 5	Probability: Probabilities
Sample 6	Number: Index laws
Sample 7	Algebra: Linear relationships
Sample 8	Measurement: Volume of a prism
Sample 9	Measurement: Surface area and volume
Sample 10	Statistics: Data displays
Sample 11	Measurement: Trigonometry and similarity in right-angled triangles
Sample 12	Measurement and geometry: Cylinder volume
Sample 13	Algebra: Coordinate geometry

This portfolio of student work shows the application of the index laws to numbers (WS6) and expresses numbers in scientific notation (WS6). The student finds the distance between two points on the Cartesian plane, the gradient and midpoint of a line segment and sketches linear relationships (WS7, WS13). The student recognises the connection between similarity and trigonometric ratios (WS11) and uses Pythagoras' Theorem (WS2) and trigonometry to find unknown sides in right-angled triangles (WS1, WS11). The student uses measurement, ratio and scale factor to calculate unknown lengths in similar figures (WS4, WS11). The student calculates the areas of shapes and the volumes and surface areas of right prisms and cylinders (WS3, WS8, WS9, WS12). The student interprets and represents data in back-to-back stem-and-leaf plots and frequency histograms (WS10). The student calculates relative frequencies to estimate probabilities, lists outcomes for two-step experiments and assigns probabilities for those outcomes (WS5).

Measurement: Trigonometry

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on the trigonometric ratios. They were given a quiz to be completed as a class test during a lesson.

Measurement: Trigonometry

Quiz 1 - Angles

1. Consider $\operatorname{Tan} 31^{\circ}$. Explain as much as you can from this information. What can this tell you about the triangle?

$$
\begin{aligned}
& \text { The } \theta \text { angle is } 31^{\circ} \\
& \text { you are looking at the opposite \& adjacent sides of the triangle. } \\
& \text { the triangle is right angled. } \\
& \text { kow would use Tan } 31^{\circ} \text { to And one of the sides of the triange (either o/a) } \\
& \text { The triange may look like: }
\end{aligned}
$$

2. Two of the side lengths of a right angled triangle are 9 and 15 . What could the reference angle be? Explain your thinking.

$$
\begin{array}{ccc}
\sin \theta=\frac{9}{15} & \tan \theta=\frac{15}{4} & \cos \theta=\frac{9}{15} \\
=\sin ^{-1}(9 \div 15) & \theta=\tan ^{-1}(15 \div \theta) & \theta=\cos ^{-1}(9 \div 15) \\
\theta=36.87^{\circ} & \theta=59.04^{\circ} & \theta=53.13^{\circ}
\end{array}
$$

The two side lengtins agn be placed in thise difforent ways, to make three different riangles
-depending on which sides the lengths are for on the trianglie is what determines ohat the reference angle will be iffte

- So you could be using ang ${ }^{\text {offte }} \frac{\mathrm{s}}{\mathrm{s}}$ ratio's (\sin , \cos , \tan) and each one will wave a defecent angle.
therefore he reference angle coulot be eithen $36.87^{\circ}(\sin), 59.0$ of tain or $53.13^{\circ}(508)$

Annotations

Explains the tangent ratio in relation to the angle.

Draws and labels the sides of three possible right-angled triangles, recognising that the hypotenuse must be the longer of the two sides when using the sine and cosine ratios.

Demonstrates understanding of the use of the sine, cosine and tangent ratios.

Explains the reasoning of the positioning of the sides.

Measurement: Trigonometry

Annotations

Identifies and explains the mistakes and provides correct alternatives.

Uses trigonometry to find unknown sides of right-angled triangles solving both for the hypotenuse and another side.

Measurement: Trigonometry

Quiz 3-Applications of Trigonometry

1. Sarah is standing 100 m due south of a tower. Dougal is standing 140 m due west of the same tower. Using both compass bearings and true bearings, find the bearing of

b. Sarah from Dougal

$$
\theta=\tan ^{-1}(100 \% 140)
$$

$$
\theta=35.54^{\circ}
$$

Surah from dougal is: $S 54.46^{\circ} E$
$125.54^{\circ} T$

$\mathrm{N} 54.46^{\circ} \mathrm{W}$

$305.54^{\circ} \mathrm{T}$

2. From her vantage point on a cliff, Maria sights two swimmers in a direct line in front of her at angles of depression of 38.6° and 53.9°. If Maria is 50 m above the water level, find the distance between the two swimmers.

Annotations

Calculates an appropriate angle and uses this to determine the required bearings.

Calculates each distance and then uses them to answer the question.

Measurement: Wheelchair access (Pythagoras' Theorem)

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on Pythagoras' Theorem. They were given a worksheet with questions relating to Australian Standards Council regulations for slopes of ramps into buildings. Students completed the task as a class test during a lesson.

Measurement: Wheelchair access (Pythagoras' Theorem)

23. Wheelchair Ramps, Slopes and Accessibility

The Australian Standards Council has regulations for slopes of ramps into buildings, in order for wheelchairs to be accessible to the buildings. Such ramps must have no greater slope than 1 in 14.

By the term " 1 in 14", we mean that for every 14 metres travelled horizontally (not actually on the ramp), we rise 1 metre. (The diagram below is not to scale.)

Use this information to answer the following question:

1. If a person effectively rises 1 metre vertically in moving along a 1 in 14 ramp, what is the length of the ramp? Please explain your working.

$$
\begin{array}{ll}
\text { Length of ramp }=c . & \text { Using Pythagoras' theorem, the } \\
a^{2}+b^{2}=c^{2} & \text { Cength of the ramp is calculaced } \\
c=\sqrt{1^{2}+14^{2}} & \text { as it represents the hypoteruse of } \\
=14.04 \text { units. } & \text { the right angled triangle. }
\end{array}
$$

2. You have been asked to work out the size and cost of a ramp for accessibility to a portable classroom at a school. The ramp must rise by a total of 0.5 m .
a) What would be the minimum length of such a ramp?

$$
\begin{aligned}
1: 14 \\
=0.5: 7
\end{aligned} \quad \begin{aligned}
& 7 b=\sqrt{05^{2}+7^{2}} \\
&=7.02 \text { units } \\
& \therefore 0.5 \\
& \text { The mimimum length of such a ramp } \\
& \text { is } 7.02 \text { units. }
\end{aligned}
$$

b) If the ramp is 1.5 m wide, and non-slip materials used in making the ramp cost $\$ 25$ per square metre, what will be the cost of the non-slip surface of the ramp? Once again, please show your working. Non slip surface

$$
\begin{aligned}
& \text { cost } i \\
& 10.53 \times 25 \\
= & \$ 263.17 .
\end{aligned}
$$

Annotations

Recognises that Pythagoras' Theorem applies and uses it to determine the required length.

Uses ratio and similar triangles to determine the side lengths of the triangle and then calculates the required length using Pythagoras' Theorem.

Correctly calculates the cost, clearly showing the steps in the solution process.

Measurement: Tall and short (volume of a cylinder)

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on surface area and volume. They were given a worksheet pertinent to this topic and asked to complete it without assistance during a lesson.

Measurement: Tall and short (volume of a cylinder)

20. "Tall and Thin" or "Short and Fat"

By taking appropriate measurements and carrying out calculations, answer the following question:

Which would hold the most:

- a cylinder made from an A4 sheet of paper, rolled so that it is "tall and thin";

OR

- a cylinder made from an A4 sheet of paper, rolled so that it is "short and fat".

Please calculate the capacity in each case, show all your working, and then answer the question: "which would hold the most?"

$$
\begin{aligned}
& \text { The cylinder made out of an A4 shat of paper that would } \\
& \text { hold the most is the "short and fat"cylinder, as it holds approximately } \\
& 428.32 \mathrm{~mL} \text { more than the "tall and thin" cylinder. }
\end{aligned}
$$

Annotations

Records measurements of A4 sheet.

Calculates the radii of the cylinders given their circumferences.

Correctly converts from units of volume to units of capacity.

Calculates the volume of each cylinder correct to two decimal places.

Compares capacities to determine which is the greater and calculates the size of the difference.

Geometry: Similar triangles

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had been investigating the concepts included in the study of similar triangles. They were given the task of measuring the angle of elevation of some common objects around the school, and worked in pairs to complete a short worksheet using the measurements to make a series of measurements and calculations.

Geometry: Similar triangles

Task: Work in pairs

1. Use the clinometers to measure the angles of elevation of 4 objects around the school. Eg basketball stand, flagpole, street light, building, tree, football goal posts. Record the angles. Each person is to choose 4 objects that are different from their partner's objects.
2. Measure the distance from where you were standing to the base of the object whose angle of elevation you measured.

Record the distances.
3. Measure your own height from floor to eye level.

Record the height.
4. In the classroom, draw four right-angled triangles, each with a base length of 5 cm and an angle that corresponds to each of the angles of elevation that you measured outside.
5. Calculate the height of each object using the similar triangles

Object	Angle of elevation	Distance to object
light pole	18°	Gm
talltree outfront	40°	21 m
Canteen Door	6°	8 Sm
Sliding drors	60	9 m

Your height to eye level
145 cm

Annotations

Records angles of elevation, own height and distances as measured.

Geometry: Similar triangles

Annotations

Uses similar triangles to calculate heights illustrated by diagrams, clearly demonstrating understanding of the comparisons and ratios involved.

Clearly communicates mathematical processes, including the need to add observer's height to the calculated length of the triangle side x to find the final height of the object.

Geometry: Similar triangles

```
In this D.I., we weve finding the height of a certain object by measuring the angle from eye level with a clinometer from any distance. Then afterward, we would measure the olistance from the standing position (where we measured the angle) to the object using, a trundle wheel. We recorded our measurement results on the task sheet then drew diagrams of right-angled triangies and made calculations to figure out the height of the object.
We measured our height to eye level because we measured the angle from eyelevel and in order to find the height of the object, we had to add our height to the eye level of the calculations.
Three ways in life that the similar triangle procedure would be wseful would be for when you needed to measure the height of a tall building, the neight of trees and powerkines. It would be more convenient for people to use it insted of actulally measuring the height of a certain object.
From my results, I found the height of my selected objects using the similar triangles procedure. Mistakes I could have made may be from inaccurately drawing the diagram and getling all the calculations wrong or even gathering inaccurate data, making everything else wrong. These mistakes can be avoided by carefully checking the data that I collected or making sure that 1 drew and labelled the digrams correctly.
```


Annotations

Probability: Probabilities

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had been collecting data from experiments and using their data to investigate probabilities. Students were given the objects to complete this task in a 15-minute time period.

Probability: Probabilities

Probabilities

You have a bag of 10 balls containing 4 red ball and 6 green balls. You also have a coin which you can toss to get a head or a tail. You are going to pick a ball from your bag and then toss a coin 20 times.

Record your results in the table below.

	Colaur of ball R or G	Toss of the coin Hor T
1	R	T
2	G	T
3	G	H
4	R	T
5	G	H
6	G	T
7	R	T
8	G	H
9	G	H
10	R	T
11	G	H
12	R	T
13	G	H
14	G	T
15	R	H
16	G	H
17	R	T
18	G	H
19	R	H
20	R	H

$$
\begin{array}{l|l|l}
R H & 11 & 3 \\
\hline R T & 1 N 1 & 6 \\
\hline G H & H H 111 & 8 \\
\hline G T & H 1 & 3
\end{array}
$$

1. How many times would you expect to choose a green ball and toss a tall?, $\frac{6}{10} \times \frac{1}{2} \times 20 \times 1 \times 20=6$
2. How many times would you expect to choose a red ball and toss a head? $\frac{4}{16} \times \frac{1}{2} \times 20=4$
3. Did your results differ from what you would expect?.....YeS........

Can you explain why there might be a
difference?.............. you catculate the expected probalities you cansee what you would expect to get for G and RH Min are different because there . Is a ways a oliference between what uou expect
...nd uhdt you get

Annotations

Lists possible outcomes of the experiment using a tree diagram and calculates the theoretical probability for each outcome as a percentage.

Summarises their results using a frequency table.

Calculates expected frequencies using theoretical probabilities.

Demonstrates an understanding of the difference between relative frequencies obtained from an experiment and theoretical probabilities.

Number: Index laws

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had been revising index laws and applying them to numbers. They had investigated the use of scientific notation in various contexts. Students were asked to complete this quick quiz in a 15-minute time period.

Number: Index laws

Index laws and Numbers

1. Answer the following questions

Question	Answer	Question	Answer
1. $2^{3} \times 2^{5}=$	$\begin{aligned} & =28 \\ & =256 \end{aligned}$	2. $2^{6} \div 2^{4}=$	$\begin{aligned} & 22 \\ & =4 \end{aligned}$
3. $4^{2} \times 4^{1}=$	$\begin{aligned} & =4^{3} \\ & =64 \end{aligned}$	4. $7^{7} \div 7^{5}=$	$\begin{aligned} & =72 \\ & =4 a \end{aligned}$
5. $6^{1} \times 6^{1}=$	$\begin{aligned} & =6^{2} \\ & =36 \end{aligned}$	6. $8^{4} \div 8^{4}=$	$=8^{\circ}$
7. $\left(2^{3}\right)^{2}=$	$\begin{aligned} & =2^{6} \\ & =64 \end{aligned}$	8. $10^{0}=$	$=1$
9. $2\left(3^{0}\right)^{2}=$	$\begin{aligned} & =2 \times 3^{0} \\ & =2 \end{aligned}$	10. $2^{3} \div 2^{5}=$	$\begin{aligned} & =\partial^{-2} \\ & =\frac{1}{2^{2}} \end{aligned}$
11. $25^{\frac{1}{2}}=$	$\begin{aligned} & =\sqrt{25} \\ & =5 \end{aligned}$	12. $16^{\frac{1}{2}} \times 16^{\frac{1}{2}}=$	$\begin{aligned} & =16^{\frac{1}{4}} \\ & =\sqrt[4]{16}=2 \end{aligned}$

2. Express the following numbers in scientific notation:

Question	Answer	Question	Answer
1.100	$=1.0 \times 10^{2}$	2.5010	$=5.01 \times 10^{3}$
3.210000	$=2.1 \times 10^{5}$	4.7567	$=7.567 \times 10^{3}$
5.0 .0025	$=2.5 \times 10^{-3}$	6.0 .00000012	$=1.2 \times 10^{-7}$
7.32654	$=3.2654 \times 10^{4}$	8.0 .000003652	3.652×10^{-6}
9. 10001000	$=1.0004 \times 00^{7}$		
	$=1.0001 \times 10^{7}$	10.0 .001000356	$=1.000356 \times 10^{-3}$

3. Why is it necessary to write numbers in scientific notation? Can you give examples? Scientifuc motation malzes it mossible to urnte

 ine........nhorgtuan

Annotations

Uses index laws to correctly evaluate all numerical expressions, leaving answers in simplest form.

Correctly identifies the positive and negative powers of 10 and expresses numbers in scientific notation.

Explains the purpose of writing numbers in scientific notation and provides a relevant context for their use.

Algebra: Linear relationships

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on linear relationships. They had investigated the gradient and midpoint of the interval joining two points and the distance between those two points on the Cartesian plane. Students were given a series of questions on the topic and completed the task as a test in class.

Algebra: Linear relationships

Number and Algebra

- Answer all questions neatly in the spaces provided.
- Show all working where appropriate.
- If necessary, round all answers to 2 decimal places unless stated otherwise.
- Calculator allowed.

Question 1

Plot the line represented by the points in the following table on the axes provided below.

x	0	1	2	3	4
y	-7	-4	-1	2	5

Annotations

Constructs line in correct position using the ordered pairs provided but has incorrect equation labelled on line.

Algebra: Linear relationships

Question 2

(a) The tables below represent linear relationships. How can you tell?
(i)

(ii)

> Because tey both x and y on both tables go up the same amount each time.
(b) Determine the rule between x and y for the tables in (a).
(i)

$$
4=0+c
$$

(ii)

Question 3

On the axcs bclow, plot the following lines, labelling each one.
A: a line that has a gradient of 3 and a y-intercept at $(0,5)$.
B: the line $y=\frac{1}{4} x-6$.
C: the line $x=6$.

Annotations

Demonstrates understanding of linear relationships. Identifies the 'common difference' for each table of values and explains why the relationships are linear.

Determines the rule for each table of values.

Plots linear relationships using correct intercepts and correct gradients.

Algebra: Linear relationships

Question 4

Determine the equations of the following lines. Show all working.
(a) The line with a gradient of $\frac{1}{2}$ with a y-intercept of 6 .

$$
y=\frac{1}{2} x+6
$$

(b) The line that has a gradient of 4 and passes through the point $(\underset{2}{2}, 3)$.

$$
\begin{aligned}
y & =4 x+c \quad y=4 x-5 \\
3 & =4 \times 2+c \\
3 & =8+c \\
3-8 & =c \\
-5 & =c
\end{aligned}
$$

Annotations

Determines the equations of lines from a variety of given information.

Algebra: Linear relationships

Question 5

Tahleah babysits to earn money. For all her clients she charges an hourly fee and also an additional one off fee for each babysitting job
(a) If for a 2 hour babysitting job she charges $\$ 16$ and for a 5 hour babysitting job she charges $\$ 34$, determine the rule that she uses to calculate the amount she charges, $\$ C$, for each babysitting job of h hours

(b) Use your rule from (a) to calculate how much Tahleah would charge for a three and a half hour babysitting job.

$$
\begin{aligned}
& C=6 \times 3 \frac{1}{2}+4 \\
& C=\$ 25
\end{aligned}
$$

(c) (i) With reference to your rule, state the amount the Tahleah charges per hour. If you graphed the line, what feature would this value represent? She charges $\$ 6$ per hour. Is this was graphed, the lines Point would go vp by 6 each time. the 6 is the gradient.
(ii) With reference to your rule, state the amount the Tahleah charges as the additional fee per job. If you graphed the line, what feature would this value represent?

$$
\begin{aligned}
& \text { Te additional fee is } \$ 4 \text {. If this was graphed, } \\
& \text { it would represent the y-intercept. }
\end{aligned}
$$

Annotations

Recognises that the relationship is linear and determines a rule using the given information.

Uses the rule from previous question to determine the value.

Explains what the value the gradient and the y-intercept of the line represent in the context of the problem.

Algebra: Linear relationships

Question 6

Determine the coordinates of the midpoint between the points $(3,-7)$ and $(5,3)$.
Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y^{2}+y_{1}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{3+5}{2}, \frac{-7+3}{2}\right) \\
& =\left(\frac{8}{2}, \frac{-4}{2}\right) \\
& =(4,-2) \\
& =(4,-2), \quad x^{3} y^{3}, x^{2} y^{2}
\end{aligned}
$$

Question 7
Determine the distance between the points $(3,9)$ and $(6,4)$, giving your answer to 2 decimal places.

$$
\begin{aligned}
\text { Distance } & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(6-3)^{2}+(4-9)^{2}}
\end{aligned}
$$

$\sqrt{C}=$ square

$$
\begin{aligned}
& =\sqrt{(3)^{2}+(-5)^{2}} \\
& =\sqrt{9+25} \\
& =\sqrt{34} \\
& =5.83
\end{aligned}
$$

Annotations

Uses the midpoint formula to determine the coordinates of the midpoint of an interval on the Cartesian plane.

Uses the distance formula to determine the distance between two points on the Cartesian plane.

Algebra: Linear relationships

Question 8

During a sailing competition all of the boats' positions are taken relative to a buoy (ie. the buoy has coordinates $(0,0)$). A few minutes into the competition, a boat at $(3,7)$ launches a distress flare. A rescue boat, positioned at $(-4,-5)$, sees the flare and sets out immediately to assist them. [All units are in kilometres.]
(a) How far must the rescue boat travel to reach the distressed boat?

$$
\begin{aligned}
& \sqrt{(-4-3)^{2}+(-5-7)^{2}} \\
& \sqrt{(-7)^{2}+(-12)^{2}} \\
& \sqrt{49+144} \\
& \sqrt{193}=13.89 \mathrm{~km}
\end{aligned}
$$

(b) Exactly halfway to the distressed boat the rescue boat passed a second boat that needed assistance. They instructed this boat to drop anchor and said they would return to them once they had seen to the first distress signal. Determine the co-ordinates of the second troubled boat.

$$
\begin{aligned}
& \left(\frac{3-4}{2}\right. \\
& \left(\frac{-1}{2}, \frac{-2}{2}\right) \\
& (-0.5,-1) \\
& (-0.5,-1)
\end{aligned}
$$

Annotations

Recognises that the distance formula is required and correctly substitutes all values to obtain the required distance.

Recognises that the midpoint formula

$$
\frac{7-5}{2}
$$ is required and correctly substitutes all values but makes a minor error.

Measurement: Volume of a prism

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on volume and surface area. The activity involved a real-world problem in which they were given the volume of a cuboid and asked to determine appropriate dimensions given a particular relationship between them. Students were given 10 minutes to complete the task in class.

Measurement: Volume of a prism

Task Three: Volume of Prisms

A juice manufacturing company wishes to change the packaging of their 1 litre fruit juice products. Research has shown the most appealing dimensions of a cuboid are in the ratio of 1:1:3.

Is it possible to have a cuboid with a ratio of sides of $1: 1: 3$ which contains exactly 1 litre of liquid? Explain.

A cuboid with a ratio of 1:1:3 would be the same as 3 cubes placed together.
Total Volume $=3 x^{3}$ (where x is length of side of cube)
$\mathrm{LL}=1000 \mathrm{~cm}^{3}$
$3 x^{3}=1000$
$x=\sqrt[3]{\frac{1000}{3}}$
Has a infinite number of decimal places
\therefore It is impossible to have a cuboid with a ratio of sides of $1: 1: 3$ which contains exactly 1 litre of liquid.

Annotations

Chooses an efficient approach to the problem using knowledge of algebra.

Correctly converts litres to cubic centimetres.

Provides an answer to the problem and clearly explains reasoning in mathematical terms.

Measurement: Surface area and volume

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on volume and surface area. This activity involved determining the dimensions of a cylinder with a capacity of one litre and then using the dimensions to calculate the surface of the cylinder. Students were given 10 minutes to complete the task in class.

Measurement: Surface area and volume

Annotations

Correctly converts litres to cubic centimetres.

Sets up an appropriate equation that can be solved to find the height of the cylinder and works through the solution with exact values to obtain the height.

Draws a cylinder and labels it with the dimensions obtained in the previous part of the task.

Uses a formula to calculate the total surface area of the cylinder with reasonable accuracy as rounding does not occur until the final calculation.

Statistics: Data displays

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on displaying data over a two-week period. In this activity students were asked to represent the given data in a back-to-back stem-and-leaf plot and frequency histograms. The activity was given as a class test to be completed in a lesson.

Statistics: Data displays

Annotations

Constructs the stem but does not consider splitting the stem into class intervals.

Constructs an ordered back-to-back stem-and-leaf plot showing all data values from smallest to largest on each side of the stem.

Constructs frequency histograms to represent the data.

Labels both axes correctly.

Measurement and geometry: Trigonometry and similarity in right-angled triangles

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on trigonometry, including links to the topic of similarity that was studied earlier. In this activity, students were asked to apply their knowledge of similarity and trigonometry and apply the links between the two. The activity was given as a class test in 20 minutes.

Measurement and geometry: Trigonometry and similarity in right-angled triangles

1 Consider the following triangles.
(i) Are triangles A and B similar? Explain.
Yes, because two of their angles are the rame.
A
(ii) Are triangles C and D similar? Explain.
Yes, $b e c a u s e ~ t w o ~ o f ~ t h e i r ~ a n g l e s ~ a r e ~ t h e ~ s a m e ~$

Annotations

Understands the concept of similarity and is able to explain why triangles are or are not similar.

Recognises that similarity is relevant.
Uses trigonometry to explain the equivalence of the two ratios.

Measurement and geometry: Trigonometry and similarity in right-angled triangles

3 Terry wanted to find the height of his school's flagpole.
Having walked 40 m from its base (on level ground), he measured the angle from the ground to the top of the flagpole to be 17°
(i) Draw a neat diagram to show this information.

(ii)

Terry doesn't yet know about trigonometry, so he drew a scale diagram like so:

Using a ruler, show the working Terry used to find the height of the flagpole.

$$
\begin{aligned}
& 40 \mathrm{~m}=9 \mathrm{~cm} \text { (diagram) } \\
& x_{m}=3 \mathrm{cma} \text { (diagram) } \\
& \text { Que3 } 0.09: 0.03=40: x \\
& \left.F^{k^{4 e^{k}}} 1_{40:}=x\right)^{244.4} \\
& x=0.03 \times 444.4 \\
& =13.3 \mathrm{~m}
\end{aligned}
$$

(iii) Now do your own working using trigonometry and your own diagram to find the height of the flagpole.
$\tan 17^{\circ}=\frac{x}{40}$
$x=40 \tan 17^{\circ}$
$=12.2292 \ldots$
$\doteqdot 12.23 \mathrm{~m}$
(iv) Why do the two approaches above give similar answers?
because they are both logical and legitament strategies
to find the height, they aro dieferent processes
and one is more accurate than the otwr

4 Explain why $\sin 75^{\circ}$ always has the same value, no matter the size of the triangle.

analle that is 15° are SIMILAD and the angles don't change. $\sin 75^{\circ}=\frac{x}{y}=\frac{a}{b}$
opposite side

* $\sin 75^{\circ}=\bar{y}=\frac{a}{b}$ it is a decimal and so get with different sized friangles, the fractions by the alwaten bles be simplified to its simplest form (sin 75) no matter ininnt the uumerator / denominator are or the length of side.

Annotations

Represents mathematical information given in words in diagrammatic form.

Chooses and understands an appropriate method to solve the problem but uses an inaccurate measurement.

Uses the correct trigonometric ratio to set up an equation and uses a familiar procedure to obtain the correct answer.

Uses the connection between similarity and trigonometry to explain the constancy of a trigonometric ratio.

Measurement: Cylinder volume

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a section of work on cylinders. The investigation to find the volume of cylinders was given as an assignment to be completed over a week.

Measurement: Cylinder volume

Annotations

Manipulates the formula for the circumference of a circle to calculate the radius of a created cylinder.

Calculates the volume of cylinders using the formula.

Uses cubic units to describe volumetric measure.

Explains reasoning clearly and logically.

Understands the theoretical process of cutting the sheet of paper into ever thinner strips to produce a cylinder of larger and larger volume each time.

Algebra: Coordinate geometry

Year 9 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 9, students solve problems involving simple interest. They interpret ratio and scale factors in similar figures. Students explain similarity of triangles. They recognise the connections between similarity and the trigonometric ratios. Students compare techniques for collecting data in primary and secondary sources. They make sense of the position of the mean and median in skewed, symmetric and bi-modal displays to describe and interpret data.

Students apply the index laws to numbers and express numbers in scientific notation. They expand binomial expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment. They sketch linear and non-linear relations. Students calculate areas of shapes and the volume and surface area of right prisms and cylinders. They use Pythagoras' Theorem and trigonometry to find unknown sides of right-angled triangles. Students calculate relative frequencies to estimate probabilities, list outcomes for two-step experiments and assign probabilities for those outcomes. They construct histograms and back-to-back stem-and-leaf plots.

Summary of task

Students had completed a unit of work on coordinate geometry. They were given this revision task to complete in class.

Algebra: Coordinate geometry

Annotations

Applies midpoint formula to given coordinates to calculate midpoint of an interval.

Applies distance formula to given coordinates to calculate distance between points.

Applies gradient formula to given coordinates to calculate slope of an interval.

Algebra: Coordinate geometry

Question 2

$$
C(2 a,-3 a), \quad D(5 a, a)
$$

a) $d=\sqrt{(5 a-2 a)^{2}+(a+3 a)^{2}}$

$$
=\sqrt{\left(3 d^{2}+(4 c)^{2}\right.}
$$

$$
=\sqrt{9 a^{2}+16 a^{2}}
$$

$$
=\sqrt{25 a^{2}}
$$

$$
=5 a
$$

$$
\text { b) } \begin{aligned}
\text { midp } & =\left(\frac{2 a+5 a}{2}, \frac{-3 a+5 a}{2}\right) \\
& =\left(\frac{7 a}{2}, \frac{2 a}{2}\right) \\
& =\left(\frac{7 a}{2}, a\right)
\end{aligned}
$$

C) $m=\frac{a+3 a}{5 a-2 a}$

$$
\begin{aligned}
& =\frac{4 a}{3 a} \\
& =\frac{4}{3}
\end{aligned}
$$

Applies distance, midpoint and gradient formulas to a pair of coordinates defined algebraically, simplifying answers where appropriate.

Algebra: Coordinate geometry

Copyright

Algebra: Coordinate geometry

Annotations

Uses the information already determined to calculate the area of the isosceles triangle.

