WORK SAMPLE PORTFOLIO

Annotated work sample portfolios are provided to support implementation of the Foundation - Year 10 Australian Curriculum.

Each portfolio is an example of evidence of student learning in relation to the achievement standard. Three portfolios are available for each achievement standard, illustrating satisfactory, above satisfactory and below satisfactory student achievement. The set of portfolios assists teachers to make on-balance judgements about the quality of their students' achievement.

Each portfolio comprises a collection of students' work drawn from a range of assessment tasks. There is no predetermined number of student work samples in a portfolio, nor are they sequenced in any particular order. Each work sample in the portfolio may vary in terms of how much student time was involved in undertaking the task or the degree of support provided by the teacher. The portfolios comprise authentic samples of student work and may contain errors such as spelling mistakes and other inaccuracies. Opinions expressed in student work are those of the student.

The portfolios have been selected, annotated and reviewed by classroom teachers and other curriculum experts. The portfolios will be reviewed over time.

ACARA acknowledges the contribution of Australian teachers in the development of these work sample portfolios.

THIS PORTFOLIO: YEAR 8 MATHEMATICS

This portfolio provides the following student work samples:
Sample 1 Number and measurement: Food pyramids
Sample 2 Number: Feed the family
Sample 3 Statistics: Books, cricket and pets
Sample 4 Algebra: Linear relationships in the real world
Sample 5 Geometry: Sorting quadrilaterals
Sample 6 Number: Ratios
Sample 7 Number: Halfway
Sample 8 Algebra: Solving linear equations
Sample 9 Probability: Venn diagrams and two-way tables
Sample 10 Measurement: Circumference and area
Sample 11 Measurement: Rain on the roof
Sample 12 Number and measurement: Investigating circles
Sample 13 Geometry: Congruence
Sample 14 Measurement: Perimeter and area
Sample 15 Number: Integers
Sample 16 Number: Percentages

COPYRIGHT

Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, you may view, download, display, print, reproduce (such as by making photocopies) and distribute these materials in unaltered form only for your personal, non-commercial educational purposes or for the non-commercial educational purposes of your organisation, provided that you retain this copyright notice. For the avoidance of doubt, this means that you cannot edit, modify or adapt any of these materials and you cannot sub-license any of these materials to others. Apart from any uses permitted under the Copyright Act 1968 (Cth), and those explicitly granted above, all other rights are reserved by ACARA. For further information, refer to (http://www.australiancurriculum.edu.au/Home/copyright).

This portfolio of student work shows the solving of everyday problems involving rates, ratios and percentages (WS1, WS2, WS6, WS16), including those involving profit and loss (WS16). The student uses efficient mental and written strategies to carry out the four operations with integers (WS15) and describes rational numbers (WS7). The student explains issues related to the collection of data and the effect of outliers on means and medians in that data (WS3). The student solves linear equations (WS8) and graphs linear relationships on the Cartesian plane (WS4). The student deduces the properties of quadrilaterals (WS5), names the features of circles and calculates the areas and perimeters of plane shapes including circles (WS10, WS12, WS14). The student solves problems relating to the volume of prisms (WS11). The student investigates the conditions for congruence and applies these conditions to triangles (WS13). The student models authentic situations with two-way tables and Venn diagrams (WS9).

Number and measurement: Food pyramids

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given this task to consolidate previously studied units on rates, ratios and percentages.

Number and measurement: Food pyramids

Food Pyramids used by kind permission of NSW
Department of Education and Communities.
Note: For the purpose of the work sample portfolio, the
image has been reduced in size.

Annotations

Measures and records only the lengths required to facilitate calculation of necessary areas.

Shows each step in the solution process.
Demonstrates fluency by selecting and applying the appropriate area formulas to calculate the areas of the necessary sections.

Demonstrates fluency with percentage calculations.

Uses appropriate units for area.
Interprets the calculated answer in the context of the problem.

Number: Feed the family

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time relating to the unit of work they had completed on ratios and scales.

Number: Feed the family

. If this feeds a family of 4 , show how you would calculate what quantities you would need for $\mathbf{2 0}$ people. Put your answers in the table below (WORKING SPACE)
200×5
$200 \times 5 \quad 15300 \times 5$

$$
1 \times 5
$$

Annotations

Simplifies ratios using given quantities in both a simple and more complex question.

Identifies that the original recipe needs to be scaled by a factor of 5 .

Puts correct answers in table and converts to larger units of measure.

Number: Feed the family

Annotations

Calculates number of packets of each ingredient and cost based on answer to question 2 showing some working.

Uses calculated cost to feed 20 people to reasonably estimate number of people who could be fed with $\$ 50$.

Simplifies and applies ratios to scale quantities up and down.

Statistics: Books, cricket and pets

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time relating to the unit of work they had completed on statistical analysis of data and the effects of outliers on the interpretation of data.

Statistics: Books, cricket and pets

Annotations

Calculates mean, median and mode from a list of discrete data.

Recognises that the outlier would increase the mean but have little effect on the median and mode.

Statistics: Books, cricket and pets

2. In a cricket match, Australia scored a total of 347 runs. There were 11 batters.
a) What was the mean number of runs per player?

$$
31.5 \text { per batter } \quad 347 \div 11=31.5
$$

b) Do you know how many runs each batter scored? Why/Why not?

$$
\begin{aligned}
& \text { becuuse it doosnt show witch batter } \\
& \text { got how much }
\end{aligned}
$$

c) If you are told that the median score was $\mathbf{3 6}$, write down a possible score for each player in the table below.

6	12	24	18	30	36	42	48	54	38	39
Batter 1	Batter 2	Batter 3	Batter 4	Batter 5	Batter 6	Batter 7	Batter 8	Batter 9	Batter10	Batter11

3. A survey was taken in a year 8 class asking each student how many pets they had at home. A frequency distribution histogram was drawn of the results.
a) Fill out the frequency distribution table

x	f	$f x$
0	4	0
1	6	6
2	7	14
3	4	12
4	2	5
5	1	14
14	$5 f(25$	564

How many students were surveyed?	How many pets were there all together?
What is the mean number of pets?	What is the effect of the outlier?
pets~ 45	
people - 24	
	1.875

WHO MIGHT BE-THIS INFORMATION BE USEFUL FOR?

Annotations

Calculates the mean showing working.
Demonstrates understanding that the sum of the data values does not provide information about individual data values.

Creates an appropriate data set with the correct median, number of values and sum.

Interprets data presented in a graph to find the number of students surveyed and the total number of pets and calculates the mean using these numbers.

Recognises 14 as the outlier and calculates the decrease in the number of pets and the mean without the outlier included.

Algebra: Linear relationships in the real world

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were asked to research the peak rates for taxi hire in the ACT and NSW. The rates at the time are shown in the table below.

	ACT	NSW
Flag fall	$\$ 4.70$	$\$ 3.50$
Price/km	$\$ 1.90$	$\$ 2.14$

Students were asked to use their knowledge of graphing and equations to make comparisons between the two sets of information and to use mathematical reasoning to draw conclusions from the investigation.

Algebra: Linear relationships in the real world

Annotations

Graphs linear relationships, labelling the axes and giving units, a key and a title.

Algebra: Linear relationships in the real world

3. Write an Algebraic equation to suit the ACT Taxi rates.
(Hint: flag rate + price per $\mathrm{km}=$ Cost of ride)

$$
\begin{aligned}
\$ 4.20+\$ 1.90 x=C \quad & C=\operatorname{cost} \\
x & =\mathrm{km}
\end{aligned}
$$

4. Write an Algebraic equation to suit the NSW Taxi rates

$$
\$ 3.80+\$ 2.19 x=c
$$

5. Explain how your equations work, in words:

6. At which distance does NSW become more expensive than ACT taxis and why?
\qquad

will be higher than the ACT's
\qquad
\qquad
\qquad
7. If you had $\$ 20$, how far could you travel in a taxi in the ACT?

$$
\begin{aligned}
& 20=\$ 4.7+1.9 x \\
& 15.3=11.9 x \\
& 8.052=x
\end{aligned}
$$

Annotations

Defines variables and derives correct linear equations from the information given.

Links the equation created with the real-life problem and explains why the equation works to model the situation.

Compares the graphs of two linear relationships, demonstrating understanding of the meaning of their point of intersection.

Understands the variables used in the equation and solves the equation for a given situation.

Algebra: Linear relationships in the real world

Annotations

Explains why the graph is a not valid representation and relates it to the context.

Geometry: Sorting quadrilaterals

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time relating to the unit of work they had completed on quadrilaterals. They were required to show their reasoning when drawing conclusions.

Geometry: Sorting quadrilaterals

19. Sorting Quadrilaterals

In the table below, sketch a quadrilateral with the properties indicated by each box in the table. Label all right angles and sides that are parallel.
If it is impossible to fill a particular box in the table, write "impossible" and a brief justification for this.
(Two cells in the table have already been completed for you.)
If a particular case is possible, write in the most specific name you can for the quadrilateral you have drawn underneath your drawing (e.g, rectangle, trapezium, etc.)

Number of pairs of parallel sides (exactly)

Demonstrates an understanding of the features of quadrilaterals.

Demonstrates geometric reasoning when combining the constraints of the number of right angles and parallel sides in the construction of quadrilaterals.

Number: Ratios

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time relating to the unit of work they had completed on reasoning using problem-solving strategies.

Number: Ratios

Annotations

Explores both ratios to find an example that satisfies both of them.

Multiplies one ratio by a factor of three to generate a solution.

Synthesises the requirements of both ratios to analyse the composition of the group.

Number: Halfway

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time relating to the unit of work they had completed on rational numbers. The task required students to demonstrate their reasoning and problem-solving skills to answer the questions.

Number: Halfway

Annotations

Represents rational numbers on a number line on which the line segments are equally spaced.

Compares the two rational numbers using equivalent fractions with the same denominator.

Uses fraction bars of approximately equal length and area to show the relative sizes of the rational numbers being compared..

Algebra: Solving linear equations

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time after a unit of work on algebraic expansions and solving equations.

Algebra: Solving linear equations

Algebraic Expressions-Equations	
Please expand the expression to solve the equation	
$\begin{gathered} 9(d+6)=63 \\ 9 a+54=63 \\ 9 d=9 \\ d=1 \end{gathered}$	$\begin{aligned} 8(y+5)=80 & \\ 8 y+40 & =80 \\ 8 y & =40 \\ y & =5 \end{aligned}$
$\begin{aligned} & 6(f-10)=18 \\ & 6 f-60=18 \\ & 6 f=-42 \end{aligned}$	$\begin{aligned} & 5(m-1)=10 \\ & 5 m-5=10 \\ & 5 m=15 \\ & m=3 \end{aligned}$
$\begin{aligned} 4(x+9)=56 & =56 \\ 4 x+36 & =56 \\ 4 x & =20 \\ x & =5 \end{aligned}$	$\begin{aligned} & 8(4 y-3)=72 \\ & 32 y-24=72 \\ & 32 y=96 \\ & y=3 \end{aligned}$
$\begin{array}{r} 2(3 t+5)=10 \\ 6 t+10=10 \\ 6 t=0 \\ t=0 \end{array}$	$\begin{array}{r} 7(x-4)=56 \\ 7 x-28=56 \\ 7 x=84 \\ x=12 \end{array}$
$\begin{aligned} & 3(4 x+3)=93 \\ & 12 x+9=93 \\ & 12 x=84 \\ & x=7 \end{aligned}$	$\begin{aligned} & 10(2 a-3)=50 \\ & 20 a-30=50 \\ & 20 a=80 \\ & a=4 \end{aligned}$
$\begin{aligned} & 4(x+2)=40 \\ & 4 x+8=40 \\ & 4 x=32 \\ & x=8 \end{aligned}$	$\begin{aligned} & 7(2 z+1)=21 \\ & 4 z+7=21 \\ & 14 z=14 \\ & z=1 \end{aligned}$
$\begin{aligned} & 3(2 t-9)=15 \\ & 6 t-27=15 \\ & 6 t=42 \\ & t=7 \end{aligned}$	$\begin{aligned} & 3(3 a-1)=42 \\ & 9 a-3=42 \\ & 9 a=45 \\ & a=5 \end{aligned}$
$\begin{aligned} & 5(2 x+3)=55 \\ & 10 x+15=55 \\ & 10 x=40 \\ & x=4 \end{aligned}$	$\begin{aligned} & 4(p+7)=32 \\ & 4 p+28=32 \\ & 4 p=4 \\ & p=1 \end{aligned}$

Annotations

Expands each expression and then solves the equation.

Expands the expression ensuring correct usage of negatives in the expansion and the solution of the equation.

Probability: Venn diagrams and two-way tables

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students had been using Venn diagrams and two-way tables to model information and hence draw conclusions.
Students were required to complete the activity involving Venn diagrams and a two-way table.

Probability: Venn diagrams and two-way tables

Annotations

Synthesises information in Venn diagram to reason a solution to each question.

Demonstrates understanding of the structure of the two-way table and how the totals of the vertical columns and horizontal rows align.

Measurement: Circumference and area

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time after a unit of work on circles.

Measurement: Circumference and area

Circumference and area of circles

a) on one of the circles label:
I. an arc
II. a sector
III. a segment
b) Calculate the circumference and area of each of the given circles

Annotations

Calculates the circumference and area of the circle with correct usage of units. Uses the wrong radius for area but performs a correct calculation.

Identifies and labels the required parts of the circle.

Rounds answers and states the number of decimal places to which they were rounded.

Measurement: Rain on the roof

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time after a unit of work on volume.

Measurement: Rain on the roof

Rain on My Roof

Typical roof areas:

Home Type	Roof area $\left(\mathbf{m}^{2}\right)$
2 bedroom home	100
3 bedroom home	150
4 bedroom home	200
5 bedroom home	250

Assume the roof is flat. (This makes little difference to the amount of rain collected).

From the table, choose a home
Using your choice of home, calculate the amount of rainwater in litres (L) collected by the roof of your chosen home when one millimetre (1 mm) of rain falls.

$$
\begin{aligned}
& \begin{array}{l}
\text { My choice of home:- } 250 \mathrm{~m}^{2} \Rightarrow \quad 5 \text { bedro0 } \mathrm{m} \quad \begin{array}{l}
1 \mathrm{~mm}=0.001 \mathrm{~m} \\
1 \mathrm{~m}^{3} \text { holds }=1000 \mathrm{~L} \\
\text { Calculations: } \\
\text { Roof is a rectangular prism } \\
\text { Volume of rairi }=(250 \times 0.001) \mathrm{m}^{3} \\
\text { Volume in litres }=(250 \times 0.001 \times 1000) \mathrm{L}
\end{array}
\end{array} \\
& =250 \mathrm{~L}
\end{aligned}
$$

Amount of rainwater collected by the roof when 1 mm of rain falls is. The same as the

$$
\begin{aligned}
& \text { ollecteadeythe ror when immor ran fals is...ause multiplying by } \\
& \text { area of the roof because } \\
& 1000 \text { cancels out the } 0.001
\end{aligned}
$$

Annotations

Calculates to volume of water on the roof in litres.

Draws a correct conclusion as to why the numerical answer in litres is the same as the numerical answer to the area of the roof.

Number and measurement: Investigating circles

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students had been learning about the concept of irrational numbers, including π, and the relationship between the circumference of a circle and the radius.

The students were asked to investigate the relationship between the circumference and the diameter of a circle by measuring a variety of circular objects. They were given one week to complete the task.

Number and measurement: Investigating circles

Year 8 Task One: Investigating Circles

1. Label the diagram of the circle to the right including all the important features you know.

Annotations

2. (a) Use an appropriate method to measure the circumference and the diameter of the circular objects below.
(b) Represent the ratio circumference : diameter in the form of $\mathrm{a}: 1$
(c) Summarize your findings

	Circumference	Diameter	$\begin{array}{\|l\|} \hline \text { Circumference:Diameter } \\ 140.57: 1 \\ 3.39 .3: 1 \end{array}$
雷	$191 \mathrm{~cm}$	60)	$\begin{aligned} & 191: 60 \\ & 3.183: 1 \end{aligned}$
	$620 n$	175 cm	$\begin{aligned} & 124: 35 \\ & 3.54286 .1 \end{aligned}$

Number and measurement: Investigating circles

Number and measurement: Investigating circles

Is Circular Drive Circular?

Design and conduct an investigation to determine whether the concrete boundary of Circular Drive is a perfect circle.

circuler prive:

D: Quite difficult ine to lach of extunsiben of the the chasne

The 8 b , left on anth aus moved the kapl up to the rext
anre repetitercly (3 thes) intil we hit the odge.
(: Used the truarkenkel alay the ouride of the cownst)
conatry
R: The ration fits perfatty betaceen the 2 outlyish numbers
and the medrenvernge of the othe objects, all apparextly
catcular, proving. Thest litaular drive is an fact eircular.

Annotations

Obtains reasonable measurements for the diameter and circumference.

Determines the ratio of the circumference to the diameter.

Concludes that the drive is circular by observing that the ratio of the circumference to the diameter has a value close to those found for other circular objects.

Geometry: Congruence

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students had completed a unit of work on congruence in which they used transformations to create congruent figures and investigated the conditions for the congruence of triangles.

Students were asked to demonstrate and apply their knowledge of transformations and the conditions for the congruence of triangles. They completed the task in class under exam conditions.

Geometry: Congruence

Annotations

Identifies and names corresponding sides and angles of congruent triangles in matching order.

Reflects a figure in a vertical axis.

Geometry: Congruence

4 a Which of the following triangles are congruent? (Circle two triangles; diagrams are not to scale.)

AAS, SAS

5 Consider the following diagram.

a Which of the following congruence statements has the correct vertex order?

$$
\triangle A B D \equiv \triangle D C B \quad \triangle A B D \equiv \triangle D B C \quad \triangle A B D \equiv \triangle C D B
$$

b Which congruence test shows that the two smaller triangles are congruent?
RHS
c Explain your answer to (b).
Because we are shown that the 90° angles
are congruent
d What kind of triangle is $\triangle A B C$? Explain your answer.
isoceles. because the base edge is nol equal
to the eright and left edges

Annotations

Selects a pair of congruent triangles.

States all appropriate tests that can be used to show that the triangles are congruent.

Attempts to identify the correct test for congruency.

Geometry: Congruence

6 The rectangle in the diagram is to be rotated 90° clockwise about the marked point.

Draw the resulting rectangle inside the diagram.

7 a State the congruence test that applies to the following two triangles. (The diagram is not to scale.)

b Explain how the two triangles above could instead be proved congruence by the SSS test.
Beause if we ube the. longths (7 and 3) we con fiond the missing length wiln pythagorus

Theoren.

8 Circle the two congruent triangles below, and state the applicable congruence test.

Annotations

Rotates a figure by the desired angle but does not use the correct centre of rotation.

Recognises the connection to Pythagoras' Theorem and explains how this could be used to prove the triangles are congruent by a different test.

Identifies the two congruent triangles and states a test that can be used to show that the triangles are congruent.

Measurement: Perimeter and area

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students completed a unit of work on finding the perimeter and area of a range of two-dimensional shapes.

The task required students to answer a number of questions related to the perimeter and area of a range of twodimensional shapes, including circles. Students were asked to apply their skills to some real-world problems. They completed the task under exam conditions in class time.

Measurement: Perimeter and area

1 Calculate the perimeter and area of these shapes. Be sure to include units. Make your answers clear. Unless otherwise specified, all measurements given are in centimetres.

$P=11+7+11+7$
$=36 \mathrm{~cm}$
$A=11 \times 7 \times 6.3$
$=77 \mathrm{~cm}^{2} 69.3 \mathrm{~cm}^{2}$

$$
=1 / 2 \times 10 \times 6
$$

$$
c^{2}=a^{2}+b^{2}
$$

$$
c^{2}=a^{2}+b^{2}=30 c m^{2}
$$

$$
c^{2}=4^{2}+3^{2}
$$

$$
\begin{aligned}
c & =16+9 \\
& =16
\end{aligned}
$$

$$
c^{2}=25
$$

$c=\sqrt{25} \quad c=5$

$=281.01 \mathrm{~cm}^{2}$
d Circle

$$
\begin{aligned}
& P=2 \pi r \\
& 2 \times \pi \times 14 \\
&=87.9645943 \mathrm{~cm} \\
& A=\pi r^{2} \\
& \pi \times 14^{2} \\
&=615.7521601 \mathrm{~cm}^{2}
\end{aligned}
$$

Annotations

Determines the perimeter of various plane shapes.

Uses appropriate formulas to determine the areas of typical plane shapes.

Uses Pythagoras' Theorem to calculate the lengths of unknown sides in order to determine the perimeter.

Measurement: Perimeter and area

2 Using the three circles below, draw and label all the parts of a circle that you know.

3 Explain why it is not possible to find the area of this shape.

4

A reasonable estimate for the shaded area is (in cm^{2} - circle one)
12

25
Explain your answer

$$
\begin{aligned}
& \text { 2ـFr Tr2 } \text { Tr }^{2} 13.2973355 \div 11 \\
& .37 .6 \text { 94 } 1184 \div 11=10.28157 \\
& =3.42+19+986 \times 2 \quad \times 2 \\
& =6.85=20.56315191
\end{aligned}
$$

Annotations

Draws and names almost all parts of a circle.

Provides a reasonable explanation for why an area cannot be determined.

Provides an estimate for the area of a shape by applying a known formula and reasoning about the relationship of this calculated area to the area that is to be estimated.

Measurement: Perimeter and area

5 The following diagram is drawn to scale.

Estimate the shaded area (nearest cm^{2}), explaining your answer (with words and/or diagrams).
$16 \times 6=96$

To finar the area Mou dimes sume
$16 \approx m a 6$ togetrer +0 onet $96+h e m$
thes small semmi-ciricivke b unip doesnit
sLow bugcrea solestimetedtrot it
$w c s 3 \mathrm{~cm}^{2}$

6 a The Earth is approximately a sphere. Its diameter is 12755 km . Find the distance around the equator.

2 TV
$=2 \times T x^{2}$
$=2 \times \pi \times 6377.5$
$=40071.0143 \mathrm{~km}$
b The Earth spins on its axis once every 24 hours. If you stand on the equator, you are moving through space very fast because of the Earth's rotation. Calculate this speed.

7 Draw a diagram of a figure (neat, shaded, but not to scale) that has:
a an area of $(6 \mathrm{~cm} \times 4 \mathrm{~cm})-\pi(2 \mathrm{~cm})^{2}$

Annotations

Determines the area of the rectangle correctly and then estimates the area of the segment to be bigger than one square centimetre.

Connects the concept of the circumference of a circle to solve a realworld problem in three dimensions.

Measurement: Perimeter and area

8 Several triangles are drawn inside two parallel lines in the diagram below.

a Explain why all the triangles shown have the same area.

b Using appropriate measurements with your ruler, calculate their area.

$$
\begin{aligned}
& 1 / 2 b L \\
& =1 / 2 \times 2 \cdot 5 \times 5 \cdot 5 \\
& =6.875
\end{aligned}
$$

c Of all the possible triangles you could draw that are like those above, one triangle has the smallest perimeter. Draw this triangle in the diagram above, and briefly explain your answer.

9 The trapezium and the parallelogram shown have the same area. How long is the base of the parallelogram?

Number: Integers

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students had completed a unit of work on integers.
Students were asked a series of questions that involved calculation and reasoning with integers. The use of calculators was not permitted and students were given 20 minutes of class time to complete the task.

Number: Integers

Annotations

Adds and subtracts integers but makes an error.

Multiplies integers.

Divides integers.

Applies the order of operations to correctly evaluate expressions involving integers.

Number: Integers

5) At 12 am on Monday, the temperature in Vladivostok was recorded as $-8^{\circ} \mathrm{C}$. By 6 am the temperature had risen by $3^{\circ} \mathrm{C}$. By noon the temperature had risen by a further $7^{\circ} \mathrm{C}$. At 6 pm the temperature was $-5^{\circ} \mathrm{C}$.

What was the change in temperature between noon and 6 pm ?

$$
\begin{array}{cccc}
12 \mathrm{am} & 6 \mathrm{am} & 12 \mathrm{pm} & 6 \mathrm{pm}_{\mathrm{m}} \\
-8^{\circ} \mathrm{C} & 3^{\circ} \mathrm{C} & 7^{\circ} \mathrm{C} & -5^{\circ} \mathrm{C}
\end{array}
$$

6) Is the value of $(-46)^{86}$ positive or negative? Give a reason for your answer.
[Note: You do no need to find the value of $(-46)^{86}$].
It's positive or even exponent's on a regative bose

Annotations

Determines the correct answer and explains their reasoning using appropriate mathematical terminology.
7) Place a number in each box to make the statements true:
a) $20+-80=-60$
b) $35-5 \times-8=75$
8) Tom wrote:
'If a question with integers involves exactly two minus signs, one plus sign, and no other operations, then the answer is positive.'

Is Tom's statement always correct or sometimes correct or never correct? Provide at least one example to support your decision.
Tom's Statement is sometrines correct due to the ... Sat that due \hbar the nature that the operations
ore orrorged, the arse- con be positive or
Negative:
e.g $2 t-3-1=-2$

$$
2+5--3=6
$$

Number: Percentages

Year 8 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 8, students solve everyday problems involving rates, ratios and percentages. They recognise index laws and apply them to whole numbers. They describe rational and irrational numbers. Students solve problems involving profit and loss. They make connections between expanding and factorising algebraic expressions. Students solve problems relating to the volume of prisms. They make sense of time duration in real applications. They identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. Students model authentic situations with two-way tables and Venn diagrams. They choose appropriate language to describe events and experiments. They explain issues related to the collection of data and the effect of outliers on means and medians in that data.

Students use efficient mental and written strategies to carry out the four operations with integers. They simplify a variety of algebraic expressions. They solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and volume. They perform calculations to determine perimeter and area of parallelograms, rhombuses and kites. They name the features of circles and calculate the areas and circumferences of circles. Students determine complementary events and calculate the sum of probabilities.

Summary of task

Students were given a task to complete in class time after a unit of work on profit and loss.

Number: Percentages

Item	Cost price	$\%$	Profit/loss	Selling Price
TV storage combo	$\$ 1796$	30%	profit	$\$ 2334.80$
Set of 4 draws	$\$ 45.00$	75%	loss	$\$ 11.25$
Two seat sofa	$\$ 2698.00$	$33 \frac{1}{3} \%$	profit	$\$ 3601.83$

Annotations

Calculates required percentage.

Solves simple profit and loss problems but with an error.

Number: Percentages

3) How can you tell if an item is being sold for profit or a loss
you can tell by ouserving the difference between the cost price and
the selling price. If the cost is bigger it is loss and viceversa.

UNDERSTANDING

4) The Second hand shop buys second hand desks for $\$ 48.00$ and sells them for $\$ 60.00$
a) What is the ratio of the profit to the cost price
$48: 60 \rightarrow 24: 30 \rightarrow 12: 15 \rightarrow 14: 5$
b) What is the percentage profit on the cost price? $+\$ 12 \quad \frac{\$ 12 \times 100}{48}=25$
c) What is the ratio of the profit to the selling price? $12: 60 \rightarrow 2: 10 \rightarrow \square: 5$
d) What is the percentage profit on the selling price $\frac{12}{60} \times 100=20 \%$
BUY WHAT YOU WANT AT THE HALF YEARLY SALE

Annotations

Calculates percentage profit and loss.

Draws conclusions based on reason.

Calculates and simplifies ratios and percentages, but with one error in interpretation.

Number: Percentages

	Cushion SALE	
Alvine flora	$\$ 20.00$	Now reduced by 25\%
Alvina spetsig	$\$ 11.00$	Now reduced by 40\%
Stockholm	$\$ 13.00$	Now reduced by 20\%
Eivor Krist	$\$ 18.00$	Now reduced by 25\%

5)a) Before the sale, how much would it cost to buy an Alvine flora cushion and a Stockholm cushion?

Alvine Flora	$\$ 20.00$
Stockholm cushion	$\$ 13.00$

b) What items could you buy before the sale if you had $\$ 50$ to spend?

Alvine Flora	$\$ 20.00$
Alvina spetsig	$\$ 11.00$
Eivor Kvist	$\$ 18$
Maral -	$\$ 49$

c) Calculate the sale price of the $\mathbf{3}$ cushions advertised

Alvine flora	$\$ 15$
Alvina spetsig	$\$ 6.60$
Stockholm	$\$ 10.40$

d) How much would it cost to buy an Alvine flora cushion and a Stockholm cushion at the sale?

Alvine Flora	$\$ 15$
Stockholm cushion	$\$ 10.40$
	total $=\$ 25.40$

e) How much have you saved by buying these 2 items at the sale rather than before the sale?

Alvine Flora	$\$ 5.00$
Stockholm cushion	52.60

Annotations

Performs the required calculations.

Number: Percentages

Annotations

Reasons with explanations.

Understands the difference between calculating correctly the solution in two stages and the method implied in the customer's comment.

Number: Percentages

PROBLEM SOLVING

ARE YOU A SMART SHOPPER

In your local town there are 3 stores that sell paint: Fred's bargain centre, local hardware and John's paints
This week they have a special deal on some products.

- At Fred's bargain centre, they are selling paint at discount prices

Yellow paint	Were $\$ 12.00$ per iitre now 35% off
Green paint	Were $\$ 15$ per litre now $\mathbf{2 5 \%}$ off
Purple paint	Were $\$ 18.00$ per litre now $\mathbf{4 0} \%$ off

- At the local hardware, you can buy items which have a certain amount free

Yellow paint	$\$ 9.90$ per litre with $\mathbf{2 0 \%}$ free
Green paint	$\$ 14$ per litre with 50% free
Purple paint	$\$ 10.40$ per litre with 60% free

- John's Paints there are some buy one get one free deals

Yellow paint	$\$ 16.00$ per litre with buy one get one free
Green paint	$\$ 28$ per litre with buy one get one free
Purple paint	$\$ 20.40$ per litre with buy one get one free

7) a) If you shopped at Fred's bargain centre, how much would you actually pay for each item?

Yellow paint	$\$ 7.80$
Green paint	$\$ 11.25$
Purple paint	$\$ 10.80$

b) How much money have you saved on each ?

Yellow paint	$\$ 4.20$
Green paint	$\$ 3.75$
Purple paint	$\$ 7.20$

c) Here is shopping list:

- 2 litres of green paint
- 5 litres of yellow paint
- $\mathbf{1 0}$ litres of purple paint
(iv) If you bought all the items in one shop, where would be the cheapest?

The L sal Hard ware
(v) If you could buy the items from different shops, how would you do it to spend the least amount
I would buy:

* yellow, \$39 (Fred's)
- green, $\$ 14.00$ (Local Hardware)
- puple, $\$ 41.00$ (Local Hardware)

Copyright

Number: Percentages

Annotations

Demonstrates logical reasoning.

Selects items and calculates totals.

