WORK SAMPLE PORTFOLIO

Annotated work sample portfolios are provided to support implementation of the Foundation - Year 10 Australian Curriculum.

Each portfolio is an example of evidence of student learning in relation to the achievement standard. Three portfolios are available for each achievement standard, illustrating satisfactory, above satisfactory and below satisfactory student achievement. The set of portfolios assists teachers to make on-balance judgements about the quality of their students' achievement.

Each portfolio comprises a collection of students' work drawn from a range of assessment tasks. There is no predetermined number of student work samples in a portfolio, nor are they sequenced in any particular order. Each work sample in the portfolio may vary in terms of how much student time was involved in undertaking the task or the degree of support provided by the teacher. The portfolios comprise authentic samples of student work and may contain errors such as spelling mistakes and other inaccuracies. Opinions expressed in student work are those of the student.

The portfolios have been selected, annotated and reviewed by classroom teachers and other curriculum experts. The portfolios will be reviewed over time.

ACARA acknowledges the contribution of Australian teachers in the development of these work sample portfolios.

THIS PORTFOLIO: YEAR 6 MATHEMATICS

This portfolio provides the following student work samples:

Sample 1	Number: Power
Sample 2	Number: How tall?
Sample 3	Number: Abstract design
Sample 4	Number: Fractions, decimals, percentages and integers
Sample 5	Number: Fifth term
Sample 6	Measurement: Area
Sample 7	Number: Calculations
Sample 8	Geometry: 3D structure
Sample 9	Number: Percentages
Sample 10	Geometry: Sam's square
Sample 11	Statistics and probability: Spinner mania
Sample 12	Measurement: Fill it up
Sample 13	Number: Brackets and the order of operations

This portfolio of student work demonstrates multiplying and dividing decimals by a power of 10 (WS1, WS7) and solving problems involving length and area using decimals (WS2, WS6). The student connects fractions, decimals and percentages as representations of the same value (WS3, WS4). The student describes the use of positive and negative numbers in everyday life (WS4) and calculates the discounted price of sale items (WS9). The student creates a sequence using whole numbers and fractions and explains the rule (WS5). The student performs calculations with whole numbers and decimals using all four operations (WS7). The student draws nets and constructs a prism and a pyramid (WS8) and plots points on a Cartesian plane (WS10). The student uses reasoning to report probability using fractions, percentages and decimals (WS11). The student calculates the volume and capacity of a container (WS12) and creates number sentences using the order of operations and brackets (WS13).

Number: Power

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on number involving multiplying decimals by multiples of powers of ten. Students were given an open-ended task to relate their reasoning skills to answer the posed problem. Students were given one class lesson to complete the task.

Number: Power

Year 6 Mathematics Task 2

Number and Algebra

Sam says that when you multiply 7.32×100, the answer is 73200 because you add 2 zeros.

Will says that can't be right and that the answer is 732 because the decimal place moves.

Is anybody correct?

yes

- How do you know who is right?

- Can you try and multiply other decimals by 10, 100 and 1000 and find a pattern with the answers?

with the answers?		
$\times 10$	1.62	4.5
$\times 100$	16.2	45
$\times 1000$	162	450

- What is the rule for multiplying decimals by powers of 10?

- Why does this rule work?

Annotations

Demonstrates an understanding that more information is required to calculate the answer.

Demonstrates an understanding of place value when multiplying decimals by a power of 10 .

Explains in detail how to multiply multiples of powers of 10 .

Justifies the rule for multiplying by powers of 10 .

Number: Power

- Can you prove that the rule works for any decimals?

- What do you think might happen when you divide decimals by powers of 10 ?

- Is there a rule for dividing decimals by powers of 10?

- Can you prove that your rule works for any decimals?

- How can you check if you are right?

I could chech if I am right by using a calculator
? redo the sum or do the oppercit opperation.

Annotations

Demonstrates a thorough understanding of multiplying decimals by powers of 10 by applying it to division.

Understands the use of technology to check calculations.

Number: How tall?

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on decimals and their connection to the metric system. They had solved problems involving length and area using decimals. Students were asked to use their reasoning skills combined with their mathematical knowledge to solve several problems. They were given one lesson to complete the task as an assessment at the end of the unit.

Number: How tall?

Annotations

Calculates answer based on given information.

Calculates height in metres after considering given information.

Calculates all possibilities by demonstrating the rule.

Number: How tall?

- Are there any other possibilities?

$$
\begin{aligned}
& 30.75 \times 1 \\
& 15.375 \times 2 \\
& 6.15 \times 5
\end{aligned}
$$

- How do you know you are right?

Because 1 found the fadtrs of $30.75 \mathrm{~cm}^{2}$

Annotations

Calculates four sets of possible dimensions of a rectangle from a given answer.

Demonstrates an application of a mathematical strategy to solve a problem.

Number: Abstract design

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on equivalent fractions, decimals and percentages. Students were asked to create an abstract design, dividing it into percentage parts and demonstrating a connection with fractions and decimals. Questions were written for the students to help them direct their mathematical thinking.

Number: Abstract design

$$
\begin{aligned}
& 50 \%=3 \times 16 \mathrm{~cm}^{2}=48 \mathrm{~cm}^{2} \\
& 25 \%=274 \frac{24 \mathrm{~cm}^{2}}{}=24 \mathrm{~cm}^{2} \\
& 24 \mathrm{~cm}^{2} \div 3=8 \mathrm{~cm}^{2}=1 / 3 \text { of } 25 \%=1 / 2 \\
& 96 \mathrm{~cm}^{2} \div 10=9.6 \mathrm{~cm}^{2} \mathrm{r} 14.4 \\
& 24 \mathrm{~cm}^{2}-9.6=14.4 \\
& 14.4 \mathrm{~cm}^{2}=15 \%
\end{aligned}
$$

Annotations

Calculates the surface area of a cube.

Uses calculations to accurately divide a net into percentages.

Calculates the area of each percentage in a net.

Uses appropriate units to make calculations.

Uses equations to justify and solve problems.

Number: Fractions, decimals, percentages and integers

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students completed a unit of work on fractions, decimals, percentages and the connections between them. They also investigated positive and negative numbers in everyday contexts.

Students were given a task to assess their understanding that consisted of two parts:
Part 1: Select two fractions, determine which one has the larger value and explain why.
Part 2: Select three positive numbers and three negative numbers, place them on a number line and use $<,>,=$ to create number sentences with them.

Number: Fractions, decimals, percentages and integers

Select 2 fractions with different denominators and a numerator which is greater than 1.
(Eg. 2/3and 4/5)

How can you prove you are right?
Can you rename any of your fractions as decimals and/or percentages?

$3 / 7>3 / 12$
$4 / 11>5 / 15$

Annotations

Simplifies fractions.

Represents fractions as percentages and decimals.

Draws two rectangles of equal length, aligned at the ends and divides them into six and four equal parts respectively so that a clear comparison of the relative fraction size can be shown.

Compares fractions by considering their percentage equivalents.

Uses mathematical symbol (>) to record comparisons of relative size.

Uses mathematical symbol (>) to record comparisons of relative size.

Number: Fractions, decimals, percentages and integers

\qquad
\qquad

Annotations

Identifies positive numbers as being bigger than negative numbers.

Describes the place of 0 on a number line that includes positive and negative numbers.

Correctly compares pairs of negative numbers.

Describes how negative numbers are used in everyday contexts.

Locates integers on a number line.
Writes number sentences.

Number: Fractions, decimals, percentages and integers

Annotations

Constructs a number line with positive and negative numbers.

Number: Fifth term

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Throughout the term students had completed several units of work, one on the addition and subtraction of fractions with different denominators and another on creating and identifying patterns in number sequences. Students were given the following question as an assessment of concepts at the end of both units of work.

Kate created a subtraction pattern using fractions with different denominators. If the fifth term in Kate's pattern was 1, what could her pattern look like?

The teacher asked the following questions to guide students through their thinking and working:

- What is the rule for your pattern?
- How did you work it out?
- What other patterns can you create where 1 is the fifth term?
- Can you convert any of your fractions to decimals?

Number: Fifth term

$121 / 28$ is equal to $2 / 3$ because 18 is 12 the product of 6 and 3 and 12 is the product of 6 and 2 there fore $1 / 1 /$ is equal to 2/3
181 18/27 is equal to $2 / 3$ because 18 is
127 the product of 2 and 9 and 27 is
$18 / 27$ is equal to 3 and 9 . .
fol $3 / a$ is equal to $2 / 3$ because a is $6 / 9$ the product of 3 and 3 and 6 is the product of 3 and 2 Therefore baa is equal to $/ 3$

Annotations

Creates a subtraction pattern involving mixed numbers and proper fractions with denominators that are multiples of three.

Writes all terms of the pattern in simplest form.

Demonstrates understanding of equivalent fractions and uses them to record the formation of the pattern.

Measurement: Area

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had started a unit of work on calculating the area of rectangles. The task was used to assess understanding during the unit so that it could be used to guide the next phase of teaching.

The students were required to calculate the area of rectangles and explain their thinking when calculating an area that could be split into rectangles. The students were asked to complete the task in 10 minutes.

Measurement: Area

Annotations

Calculates the area of a rectangle.

Calculates unknown side lengths and realises that some are not required to answer the question.

Partitions a composite shape into rectangles in order to find its area.

Clearly explains the process of calculating the area of a composite shape.

Number: Calculations

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed several units of work involving problem-solving with addition, subtraction, multiplication and division of whole numbers and decimals. Students on this occasion were given a formal pen and paper test that covered many of the concepts in the unit. They were required to estimate answers and demonstrate their thinking, using addition, subtraction, multiplication and division in single and multi-step problems.

Number: Calculations

Solve these problems.

Addition

a. '47.2
$\begin{array}{r}26.07 \\ +26.27 \\ \hline\end{array}$
b. $\quad I_{4}^{\prime} 5.1^{\prime} 8$

+36.55
82.33

Subtraction
a. $\begin{array}{r}3 / 2.5 \\ 4^{\prime} 2.5 \\ -34.4 \\ \hline\end{array}$
b. $8 \frac{5}{5} \cdot 12$

$\begin{array}{r}-34.6 \\ \hline 51.6\end{array}$

Multiplication
a. $\quad \begin{aligned} & 2 \\ & 3.7\end{aligned}$
b. $2^{2} 2^{3} 4.5$

$\times \quad 4$
1468

$\frac{x}{147}$
14.8
147.0

Division

$$
\begin{array}{ll}
\text { n } & \frac{10.7}{8} \\
\text { a. } 8 \sqrt[5]{8.6} & \text { b. } 5 \longdiv { 4 . 7 . { } ^ { 2 0 } }
\end{array}
$$

Multiply these decimals by $\mathbf{1 0 , 1 0 0}$ and $\mathbf{1 0 0 0}$. Estimate first.

	/			
0.5	5	50	500	
0.25	2.5	25	250	
0.37	3.7	37	370	
1.2	12	120	1200	
7.34	73.4	734	7340	

Divide these numbers by $\mathbf{1 0}, 100$ and $\mathbf{1 0 0 0}$. Estimate first.

50			
	5	0.5	0.05
25	2.5	0.25	20.35
37.2	3.72	0.372	000372
48.5	4.85	0.485	0.0485
542	54.2	5.42	() 542

Annotations

Calculates addition and subtraction problems involving decimals.

Performs calculations involving the multiplication of decimals by whole numbers.

Calculates answers to problems involving the division of decimals by whole numbers.

Uses knowledge of powers of 10 to multiply and divide decimals.

Number: Calculations

For the following operations you are required to complete three steps.

1. Estimate an answer and explain how you arrived at your estimate.
2. Calculate an answer.
3. Comment on whether your answer appears reasonable.

Is your answer reasonable? Explain

Subtraction

$$
\begin{aligned}
& \text { b. What is the difference between } \\
& \begin{array}{r}
3.4 \text { and } 7.171 \text { ? } \\
6 \\
7.171 \\
-\frac{3.400}{3.771}
\end{array}
\end{aligned}
$$

Is your answer reasonable? Explain.
Yes, My answer is reasonable because between my estimate and my answer, there is a minima difterence of o27l so 1 believe my answer is reasonable

Annotations

Provides estimations when calculating with decimals.

Describes strategies used in estimating the calculation of decimals.

Calculates the addition of numerous decimals.

Compares estimations and calculated answers to check reasonableness of answers.

Uses a range of strategies suitable to the operation to estimate calculation of decimals.

Number: Calculations

Annotations

Multiplies a decimal by a single-digit whole number.

Justifies estimation by explaining appropriate mathematical thinking.

Divides a four-digit whole number by a single-digit whole number to obtain a decimal answer.

Estimates and explains mathematical thinking.

Number: Calculations

You and your friends are going to the movies and it's your shout. Look at the price list below and use a multiplication strategy of your choice to answer the following questions. Show your thinking:
a How much will it cost you for 4 "Under 13 " tickets?
$(10 \times 4=40)+(50 \times 4)=42$

b Two of your friends each want a large drink and a medium popcorn. What will that cost you?

c You and your other friend want a choc top and a large drink each. What will that cost?

d Halfway through the movie, you are all dying of thirst and you go out and buy 4 bottles of water. You pay for them with a $\$ 20$ note. How much change do you receive?

Copyright

Geometry: 3D structure

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on shape that involved constructing nets, three-dimensional objects and identifying two-dimensional shapes within three-dimensional objects.

The task was given to the students the week after they had finished the unit of work to assess their knowledge of three-dimensional objects. Students were asked to construct the net of a prism and a pyramid and create the object using straws. This task took several lessons to complete.

Geometry: 3D structure

Copyright
Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (hitto://www,australiancurriculum.edu.au/Home/ copyright).

Annotations

Identifies the number and type of three-dimensional objects to make their structure.

Constructs a complex three-dimensional object using a prism and pyramids.

Designs a plan to construct a three-dimensional object.

Accurately measures length of straws.

Identifies uses for the three-dimensional object.

Number: Percentages

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed several units of work on fractions, decimals and percentages. One component was to calculate percentages of whole numbers, typically using shopping items on sale. Students were given the task to complete during a lesson.

Number: Percentages

6. Explain how you would calculate 20% of 250 .

I Methoed	$20=\frac{1}{5}$	$250 \div 5$
2	$2 \sigma=\frac{2}{10}$	$250 \div 10 * 2=50$
3	$20=\frac{20}{100}$	$250-100 \times 20=50$

\qquad
7. Calculate the discounted prices for these items.

$\$ 270$ \qquad $\$ 30$
\$ 40
30

$$
4 \frac{30}{1120}
$$

$$
30 \times 3=90
$$

$$
120-90=30
$$

Annotations

Explains how to calculate a common percentage of a quantity by describing three methods.

Calculates the amount of sale discount using common percentages.

Shows mathematical working to calculate the discounted price of an item.

Geometry: Sam's square

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on integers and coordinates on the Cartesian plane. At the end of the unit they were given the task to complete during one lesson.

Teacher questioning with task:

- Are there other possibilities?
- Is there a pattern in your answers?
- How will you record your responses?
- What if he created other types of quadrilaterals? What would the coordinates be?

Geometry: Sam's square

Sam plotted one point in each quadrant of a Cartesian plane. When he drew lines joining the points, they formed a square. What could the coordinates be?

$$
\begin{aligned}
& \text { the coordinates be? } \\
& \text { The firgt squane is }(1,1)(1,-1)(-1,1)(-1,-1) \text { then you can } \\
& \text { nelate square number thinking, so there is a pattern } \\
& \text { you increase the number by one on each ascis and the } \\
& \text { coordinates all have to be the same. } \\
& \text { other quadilaterals can be olotted myo redangle is }(3,1)(3,-1)(-3,1) \\
& (-3,-1) \text {. }
\end{aligned}
$$

Statistics and probability: Spinner mania

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed lessons on relating probability to fractions, decimals and percentages so they could calculate the theoretical probability of an event occurring.

Students were asked to create a spinner using colours so that the colours had an unequal chance of occurring when it was spun. They were asked to calculate the probability of each colour being spun and then spin the spinner a number of times and record the observed frequency of each colour. Students were asked to graph the expected results and the observed results and then compare and explain any differences.

Statistics and probability: Spinner mania

Annotations

Describes probability using percentages.

Connects percentages, fractions and decimals.

Calculates a percentage and decimal from the results of a chance experiment.

Uses tally marks to record results of chance experiment.

Explains the results of compared expected frequencies with observed frequencies.

Draws a side-by-side column graph to compare expected frequencies with observed frequencies.

Statistics and probability: Spinner mania

Annotations

Australian

Measurement: Fill it up

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.
By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students were asked to explain how to measure the capacity of a snap lock bag. When they had explained their reasoning, they were asked to measure the capacity and make a connection with volume.

Measurement: Fill it up

Annotations

Explains how to measure the capacity of a snap lock bag.

Makes a connection between capacity and volume.

Draws a diagram to demonstrate how to measure the capacity and convert to the volume of a snap lock bag.

Number: Brackets and the order of operations

Year 6 Mathematics achievement standard

The parts of the achievement standard targeted in the assessment task are highlighted.

Abstract

By the end of Year 6, students recognise the properties of prime, composite, square and triangular numbers. They describe the use of integers in everyday contexts. They solve problems involving all four operations with whole numbers. Students connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students make connections between the powers of 10 and the multiplication and division of decimals. They describe rules used in sequences involving whole numbers, fractions and decimals. Students connect decimal representations to the metric system and choose appropriate units of measurement to perform a calculation. They make connections between capacity and volume. They solve problems involving length and area. They interpret timetables. Students describe combinations of transformations. They solve problems using the properties of angles. Students compare observed and expected frequencies. They interpret and compare a variety of data displays including those displays for two categorical variables. They evaluate secondary data displayed in the media.

Students locate fractions and integers on a number line. They calculate a simple fraction of a quantity. They add, subtract and multiply decimals and divide decimals where the result is rational. Students calculate common percentage discounts on sale items. They write correct number sentences using brackets and order of operations. Students locate an ordered pair in any one of the four quadrants on the Cartesian plane. They construct simple prisms and pyramids. Students list and communicate probabilities using simple fractions, decimals and percentages.

Summary of task

Students had completed a unit of work on the order of operations and brackets. At the end of the unit, students were given an open-ended assessment task to demonstrate their understanding. The questions asked were:

- What different number sentences can you create that equal 35 ?
- Can you include brackets and order of operations in your number sentences?
- Can you explain the rules for the order of operations?
- Can you now try and create number sentences that equal 11?
- How do you know each of your number sentences is right?
- Can you use any decimals?

Number: Brackets and the order of operations

What different number sentences can you create that equal 35 ?

$$
\begin{aligned}
& 15+20=35 \\
& 60-25=35 \\
& 70-35=35 \\
& 20+5+10=35 \\
& 5 \times 7=35 \\
& ((3 \times 2)+1) \times 5=35
\end{aligned}
$$

Can you include brackets and order of operations in your number sentences? Yes

$$
(((7 \times 9)+1) \div 2)+3=35
$$

Can you explain the rules for order of operations?

$$
\begin{aligned}
& \text { In the rules of operation is that you alwouys start } \\
& \text { with the number sentence in the brackety, } \\
& \text { fellowed by division, multiplication, } \\
& \text { then addition and substraction. }
\end{aligned}
$$

Can you now try and create number sentences that equal 11?

$$
\begin{aligned}
& 6 \times 2-11 \\
& 7 \times 7-6 \times 8+10=11
\end{aligned}
$$

How do you know each of your number sentences is right?

こan you use any decimals?
yes

$$
\begin{aligned}
& 1.5 \times 2=3 \\
& 0.33333^{\circ} \times 3=0.99999
\end{aligned}
$$

Annotations

Generates number sentences using a range of different operations.

Demonstrates understanding of the use of brackets and the order of operations when constructing number sentences involving several different operations.

Uses multiple pairs of nested brackets to indicate the order in which operations must be performed in the number sentence.

Explains the order of operations.

Understands that multiplication needs to be performed before addition and subtraction even though brackets are not used to indicate this.

Explains strategies to check that working is correct.

Multiplies a decimal by a one-digit number.

Indicates knowledge of the concept of a recurring decimal.

